题目内容

9.已知:如图,AB是圆O的直径,CD为弦,连AD、AC,∠CAB=55°,则∠D=(  )
A.55°B.50°C.35°D.45°

分析 由AB为⊙O的直径,根据直径所对的圆周角是直角,∠ACB=90°,又由直角三角形的两锐角互余,即可求得∠B的度数,然后根据在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得答案.

解答 解:∵AB为⊙O的直径,
∴∠ACB=90°,
∵∠CAB=55°,
∴∠B=90°-∠CAB=35°,
∴∠ADC=∠B=35°.
故选:C.

点评 此题考查了圆周角定理与直角三角形的性质.此题难度不大,注意直径所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用,注意数形结合思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网