题目内容

20.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?
(3)请你直接写出售价在什么范围时,每天的利润不低于150元?

分析 (1)设函数关系式y=kx+b,把(10,40),(18,24)代入求出k和b即可,由成本价为10元/千克,销售价不高于18元/千克,得出自变量x的取值范围;
(2)根据销售利润=销售量×每一件的销售利润得到w和x的关系,利用二次函数的性质得最值即可;
(3)先把y=150代入(2)的函数关系式中,解一元二次方程求出x,根据二次函数与一元二次不等式的关系求出x的取值范围.

解答 解:(1)设y与x之间的函数关系式y=kx+b,把(10,40),(18,24)代入得
$\left\{\begin{array}{l}{10k+b=40}\\{18k+b=24}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=-2}\\{b=60}\end{array}\right.$.
故y与x之间的函数关系式y=-2x+60(10≤x≤18);
(2)W=(x-10)(-2x+60)
=-2x2+80x-600,
对称轴x=20,在对称轴的左侧y随着x的增大而增大,
∵10≤x≤18,
∴当x=18时,W最大,最大为192.
即当销售价为18元时,每天的销售利润最大,最大利润是192元.
(3)由150=-2x2+80x-600,
解得x1=15,x2=25,
∵W′=-2x2+80x-750,开口向下,
∴当15≤x≤25时,W′>0,
又∵10≤x≤18,
∴当15≤x≤18时,每天的利润不低于150元.

点评 本题考查了二次函数的应用,得到每天的销售利润的关系式是解决本题的关键,结合实际情况利用二次函数的性质解决问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网