题目内容
18.当x取什么样的值时,下列二次根式有意义?写出简单过程.(1)$\sqrt{x-5}$;
(2)$\sqrt{2-4x}$;
(3)$\sqrt{\frac{1}{3x+4}}$;
(4)$\frac{x}{\sqrt{2x-4}}$.
分析 (1)根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可;
(2)根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可;
(3)根据二次根式中的被开方数必须是非负数,分式的分母不为0列出不等式,解不等式即可;
(4)根据二次根式中的被开方数必须是非负数,分式的分母不为0列出不等式,解不等式即可.
解答 解:(1)$\sqrt{x-5}$,由x-5≥0得,x≥5;
(2)$\sqrt{2-4x}$,由2-4x≥0得,x≤$\frac{1}{2}$;
(3)$\sqrt{\frac{1}{3x+4}}$,由3x+4>0得,x>-$\frac{4}{3}$;
(4)$\frac{x}{\sqrt{2x-4}}$,由2x-4>0得,x>2.
点评 本题考查的是二次根式有意义的条件、分式有意义的条件,掌握二次根式中的被开方数必须是非负数,分式的分母不为0是解题的关键.
练习册系列答案
相关题目
6.计算(4$\sqrt{6}$-4$\sqrt{\frac{1}{2}}$+3$\sqrt{8}$)÷2$\sqrt{2}$的结果是( )
| A. | 2$\sqrt{3}$+2 | B. | 2$\sqrt{3}$-2 | C. | $\sqrt{3}$+2 | D. | $\sqrt{3}$-2 |