题目内容
爷爷每天坚持体育锻炼,某天他慢跑离家到中山公园,打了一会儿太极拳后搭公交车回家.下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图象是( )
A. B. C. D.
若关于x的一元二次方程ax2﹣bx+2=0(a≠0)的一个解是x=1,则3﹣a+b的值是_____.
计算:
(1)23﹣17﹣(﹣7)+(﹣16);
(2)-5+6÷(-2)×;
(3)-36×;
(4)﹣23+|5﹣8|+24÷(﹣3).
如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB,CD的延长线分别交于E,F.
(1)求证:△BOE≌△DOF;
(2)当EF与AC满足什么关系时,以A,E,C,F为顶点的四边形是菱形?证明你的结论.
点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣3x+b上,则y1,y2,y3的大小关系是 .
若菱形的周长为8,高为1,则菱形两邻角的度数比为( )
A. 3:1 B. 4:1 C. 5:1 D. 6:1
有这样一道题“计算:(2m4-4m3n-2m2n2)-(m4-2m2n2)+(-m4+4m3n-n3)的值,其中,n=-1.”小强不小心把错抄成了,但他的计算结果却也是正确的,你能说出这是为什么吗?
下列几种说法正确的是( )
A. ﹣a一定是负数
B. 一个有理数的绝对值一定是正数
C. 倒数是本身的数为1
D. 0的相反数是0
从实数―1,―2,1中随机选取两个数,积为负数的概率是__________.