题目内容

4.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,DF∥AB,交BC于点F,当△ABC满足条件∠ABC=90°时,四边形BEDF是正方形.

分析 由题意知,四边形DEBF是平行四边形,再通过证明一组邻边相等,可知四边形DEBF是菱形,进而得出∠ABC=90°时,四边形BEDF是正方形.

解答 解:当△ABC满足条件∠ABC=90°,四边形DEBF是正方形.
理由:∵DE∥BC,DF∥AB,
∴四边形DEBF是平行四边形
∵BD是∠ABC的平分线,
∴∠EBD=∠FBD,
又∵DE∥BC,
∴∠FBD=∠EDB,
则∠EBD=∠EDB,
∴BE=DE.
故平行四边形DEBF是菱形,
当∠ABC=90°时,
菱形DEBF是正方形.
故答案为:∠ABC=90°.

点评 本题主要考查了菱形、正方形的判定,正确掌握菱形以及正方形的判定方法是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网