题目内容
【题目】如图,△ABC内接于⊙O,DA、DC分别切⊙O于A、C两点,∠ABC=114°,则∠ADC的度数为_______°.
![]()
【答案】48°
【解析】
如图,在⊙O上取一点K,连接AK、KC、OA、OC,由圆的内接四边形的性质可求出∠AKC的度数,利用圆周角定理可求出∠AOC的度数,由切线性质可知∠OAD=∠OCB=90°,可知∠ADC+∠AOC=180°,即可得答案.
如图,在⊙O上取一点K,连接AK、KC、OA、OC.
∵四边形AKCB内接于圆,
∴∠AKC+∠ABC=180°,
∵∠ABC=114°,
∴∠AKC=66°,
∴∠AOC=2∠AKC=132°,
∵DA、DC分别切⊙O于A、C两点,
∴∠OAD=∠OCB=90°,
∴∠ADC+∠AOC=180°,
∴∠ADC=48°
![]()
故答案为48°.
练习册系列答案
相关题目