题目内容

已知在平行四边形ABCD中,AE⊥BC,垂足为E,CE=CD,F为CE的中点,G为CD上的一点,连接DF、EG、AG,并延长AG、BC交于点H,∠DFC=∠EGC.
(1)若CF=2,AE=3,求BE的长;
(2)求证:点G为CD中点;
(3)求证:∠AGE=2∠CEG.
考点:平行四边形的性质,全等三角形的判定与性质
专题:
分析:(1)求出DC=CE=2CF=4,求出AB,根据勾股定理求出BE即可;
(2)过G作GM⊥AE于M,证△DCF≌△ECG,推出CG=CF,求出M为AE中点,
(3)由(2)可得出等腰三角形AGE,根据性质得出GM是∠AGE的角平分线,即可得出答案.
解答:(1)解:∵CE=CD,点F为CE的中点,CF=2,
∴DC=CE=2CF=4,
∵四边形ABCD是平行四边形,
∴AB=CD=4,
∵AE⊥BC,
∴∠AEB=90°,
在Rt△ABE中,由勾股定理得:BE=
AB2-AE2
=
7


(2)证明:过G作GM⊥AE于M,
∵AE⊥BE,GM⊥AE,
∴GM∥BC∥AD,
∵在△DCF和△ECG中,
∠1=∠2 
∠C=∠C 
CD=CE 

∴△DCF≌△ECG(AAS),
∴CG=CF,
∵CE=CD,CE=2CF,
∴CD=2CG,
即G为CD中点;

(3)∵AD∥GM∥BC,G为CD中点,
∴M为AE中点,
∴AM=EM,
∵GM⊥AE,
∴AG=EG,
∴∠AGM=∠EGM,
∴∠AGE=2∠MGE,
∵GM∥BC,
∴∠EGM=∠CEG,
∴∠AGE=2∠CEG.
点评:本题考查了平行四边形性质,等腰三角形的性质和判定,平行线分线段成比例定理,全等三角形的性质和判定,勾股定理等知识点的应用,主要考查学生综合运用定理进行推理的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网