题目内容

14.已知,在四边形ABCD中,AB=AD,∠B=∠D,请说明CB=CD的理由.

分析 作辅助线BD,构建等腰△ABD.在△ABD中,根据等腰三角形的性质知两个底角∠ADB=∠ABD,再根据已知条件∠B=∠D,从而求得∠CBD=∠CDB,易证明CB=CD(等角对等边).

解答 解:连接BD.
∵AB=AD,
∴∠ADB=∠ABD(等边对等角);
又∵∠B=∠D,
∴∠B-∠ABD=∠D-∠ADB,
即∠CBD=∠CDB,
∴CB=CD(等角对等边).

点评 本题考查了全等三角形的判定与性质.借助于辅助线BD将隐含在题中的条件“△ABD是等腰三角形”给挖掘了出来,给证明∠CBD=∠CDB提供了有力的依据.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网