题目内容
考点:平行四边形的性质,勾股定理
专题:
分析:由AC⊥BC,若BC=6,AB=10,根据勾股定理,可求得AC的长,然后由平行四边形的性质以及勾股定理求得BE的长,继而求得答案.
解答:解:∵AC⊥BC,BC=6,AB=10,
∴AC=
=8,
∵四边形ABCD是平行四边形,
∴EC=
AC=4,
∴BE=
=2
,
∴BD=2BE=4
.
故答案为:4
.
∴AC=
| AB2-BC2 |
∵四边形ABCD是平行四边形,
∴EC=
| 1 |
| 2 |
∴BE=
| BC2+EC2 |
| 13 |
∴BD=2BE=4
| 13 |
故答案为:4
| 13 |
点评:此题考查了平行四边形的性质以及勾股定理.此题难度不大,注意掌握数形结合思想的应用.
练习册系列答案
相关题目