题目内容
19.分析 根据折叠的性质得到∠B′AF=∠BAF,要AB′∥BD,则要有∠B′AD=∠ADB=20°,从而得到∠B′AB=20°+90°=110°,即可求出∠BAF.
解答 解:∠BAF应为55度.
理由是:∵∠ADB=20°,四边形ABCD是长方形,
∴∠ABD=70°.
∵要使AB′∥BD,需使∠BAB′=110°,
由折叠可知∠BAF=∠B′AF,
∴∠BAF应为55度.
点评 本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等.也考查了直线平行的判定.
练习册系列答案
相关题目
7.
如图,在平面直角坐标系xOy中,A(1,2),B(0,1),C(2,0)若将△ABC平移到△A1B1C1,使点A1与原点重合,则点C1的坐标和△A1B1C1的面积分别是( )
| A. | C1(0,1),2 | B. | C1(0,1),1.5 | C. | C1(1,-2),2 | D. | C1(1,-2),1.5 |
4.下列各式是分式的是( )
| A. | $\frac{x}{2}$ | B. | $\frac{x}{π}$ | C. | $\frac{2}{x}$ | D. | $\frac{x+y}{2}$ |
11.在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017D2017的边长是( )

| A. | ($\frac{1}{2}$)2016 | B. | ($\frac{1}{2}$)2017 | C. | ($\frac{{\sqrt{3}}}{3}$)2016 | D. | ($\frac{{\sqrt{3}}}{3}$)2017 |
9.
小明从家里出发到超市进行购物后返回,小明离开家的路程y(米)与所用时间x(分)之间的关系如图,则下列说法不正确的是( )
| A. | 小明家到超市的距离是1000米 | B. | 小明在超市购物的时间为30分钟 | ||
| C. | 小明离开家的时间共55分钟 | D. | 小明返回的速度比去时的速度快 |