ÌâÄ¿ÄÚÈÝ
7£®Ä³ÊоÓÃñÉú»îµÄÓÃË®·ÑÓÃÓÉ¡°³ÇÊй©Ë®·Ñ¡±ºÍ¡°ÎÛË®´¦Àí·Ñ¡±Á½²¿·Ö×é³É£¬ÎªÁ˹ÄÀøÊÐÃñ½ÚÔ¼ÓÃË®£¬ÆäÖгÇÊй©Ë®·Ñ°´½×ÌÝʽ¼Æ·Ñ£ºÒ»¸öÔÂÓÃË®10¶ÖÒÔÄÚ£¨°üÀ¨10¶Ö£©µÄÓû§£¬Ã¿¶ÖÊÕ1.5Ôª£»Ò»¸öÔÂÓÃË®³¬¹ý10¶ÖµÄÓû§£¬10¶ÖË®ÈÔ°´Ã¿¶Ö1.5ÔªÊÕ·Ñ£¬³¬¹ý10¶ÖµÄ²¿·Ö£¬°´Ã¿¶Ö2ÔªÊÕ·Ñ£®ÁíÍâÎÛË®´¦Àí·ÑÒ»Âɰ´Ã¿¶Ö0.65ÔªÊÕÈ¡£®£¨1£©Ä³¾ÓÃñ5Ô·ÝÓÃË®8¶Ö£¬Ó¦½»Ë®·Ñ¶àÉÙÔª£¿6Ô·ÝÓÃË®16¶Ö£¬Ó¦½»Ë®·Ñ¶àÉÙÔª£¿
£¨2£©Èôij»§Ä³ÔÂÓÃË®x¶Ö£¬ÇëÄãÓú¬ÓÐxµÄ´úÊýʽ±íʾӦ½»µÄË®·Ñ£®
·ÖÎö £¨1£©¸ù¾ÝÒ»¸öÔÂÓÃË®10¶ÖÒÔÄÚ£¨°üÀ¨10¶Ö£©µÄÓû§£¬Ã¿¶ÖÊÕ1.5Ôª£¬Ò»¸öÔÂÓÃË®³¬¹ý10¶ÖµÄÓû§£¬10¶ÖË®ÈÔ°´Ã¿¶Ö1.5ÔªÊÕ·Ñ£¬³¬¹ý10¶ÖµÄ²¿·Ö£¬°´Ã¿¶Ö2ÔªÊշѺÍÎÛË®´¦Àí·Ñÿ¶Ö0.65Ôª£¬ÁÐʽ¼ÆËã¼´¿É£»
£¨2£©·ÖÁ½ÖÖÇé¿öÌÖÂÛ£¬µ±0¡Üx¡Ü10ʱºÍx£¾10ʱ£¬·Ö±ð¸ù¾ÝÒÑÖªÌõ¼þÁÐʽÕûÀí¼´¿É£®
½â´ð ½â£º£¨1£©ÓÃË®8¶Öʱ£¬Ó¦½»Ë®·ÑÊÇ£º1.5¡Á8+0.65¡Á8=17.2£¨Ôª£©£»
ÓÃË®16¶Öʱ£¬Ó¦½»Ë®·ÑÊÇ£º1.5¡Á10+6¡Á2+0.65¡Á16=37.4£¨Ôª£©£»
£¨2£©µ± 0¡Üx¡Ü10ʱ£¬Ó¦½»µÄË®·ÑÊÇ£º1.5x+0.65x=2.15xÔª£»
µ±x£¾10ʱ£¬Ó¦½»µÄË®·ÑÊÇ£º15+2£¨x-10£©+0.65x=£¨2.65x-5£©Ôª£®
µãÆÀ ´ËÌ⿼²éÁËÁдúÊýʽ£¬½â¾öÎÊÌâµÄ¹Ø¼üÊǶÁ¶®ÌâÒ⣬ÕÒµ½ËùÇóµÄÁ¿µÄµÈÁ¿¹ØÏµ£®¹ØÏµÎª£ºÓ¦½»Ë®·Ñ=×ÔÀ´Ë®·Ñ+ÎÛË®´¦Àí·Ñ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
17£®
ÒÑÖªÈçͼ£¬ÁâÐÎABCDµÄËĸö¶¥µã¾ùÔÚ×ø±êÖáÉÏ£¬¶Ô½ÇÏßAC¡¢BD½»ÓÚÔµãO£¬DF¡ÍAB½»ACÓÚµãG£¬·´±ÈÀýº¯Êýy=$\frac{\sqrt{3}}{x}$£¨x£¾0£©¾¹ýÏß¶ÎDCµÄÖеãE£¬ÈôBD=4£¬ÔòAGµÄ³¤Îª£¨¡¡¡¡£©
| A£® | $\frac{4\sqrt{3}}{3}$ | B£® | $\sqrt{3}$+2 | C£® | 2$\sqrt{3}$+1 | D£® | $\frac{3\sqrt{3}}{2}$+1 |
2£®ÏÂÁÐÊýÖÐ$\sqrt{2}$¡¢$\sqrt{16}$¡¢¦Ð¡¢$2.\stackrel{•}9$¡¢0.010010001¡£¨Ã¿Á½¸ö1Ö®¼äÒÀ´Î¶à¸ö0£©ÎÞÀíÊý¸öÊýÊÇ£¨¡¡¡¡£©
| A£® | 2 | B£® | 3 | C£® | 4 | D£® | 5 |
12£®
Èçͼ£¬Ò»¸ùľ°ôABµÄ³¤Îª2mб¿¿ÔÚÓëµØÃæ´¹Ö±µÄǽÉÏ£¬ÓëµØÃæµÄÇãб½Ç¡ÏABOΪ60¡ã£¬µ±Ä¾°ôÑØÇ½±ÚÏòÏ»¬¶¯ÖÁA¡ä£¬AA¡ä=$\sqrt{3}-\sqrt{2}$£¬B¶ËÑØµØÃæÏòÓÒ»¬¶¯ÖÁµãB¡ä£¬Ôòľ°ôÖеã´ÓPËæÖ®Ô˶¯ÖÁP¡äËù¾¹ýµÄ·¾¶³¤Îª£¨¡¡¡¡£©
| A£® | 1 | B£® | $\sqrt{3}$ | C£® | $\frac{¦Ð}{6}$ | D£® | $\frac{¦Ð}{12}$ |
16£®Ä³Ð£¶ÔÆßÄê¼¶ÄÐÉú½øÐÐÁ¢¶¨ÌøÔ¶µÄ²âÊÔ£¬Ìø1.7mΪ´ï±ê£¬³¬¹ý1.7mµÄÓÃÕýÊý±íʾ£¬²»×ã1.7mµÄÓøºÊý±íʾ£¬µÚÒ»×é10ÃûÄÐÉú³É¼¨ÈçÏ£¨µ¥Î»£ºcm£©£º
ÇóÕâÒ»×éÄÐÉúµÄ´ï±êÂÊ£®
| +2 | -3 | 0 | +4 | +6 | -6 | 0 | +3 | 4 | 3 |