题目内容
17.| A. | $\frac{4\sqrt{3}}{3}$ | B. | $\sqrt{3}$+2 | C. | 2$\sqrt{3}$+1 | D. | $\frac{3\sqrt{3}}{2}$+1 |
分析 过E作y轴和x的垂线EM,EN,证明四边形MENO是矩形,设E(b,a),根据反比例函数图象上点的坐标特点可得ab=$\sqrt{3}$,进而可计算出CO长,根据三角函数可得∠DCO=30°,再根据菱形的性质可得∠DAB=∠DCB=2∠DCO=60°,∠1=30°,AO=CO=2$\sqrt{3}$,然后利用勾股定理计算出DG长,进而可得AG长.
解答 解:过E作y轴和x的垂线EM,EN,
设E(b,a),
∵反比例函数y=$\frac{\sqrt{3}}{x}$(x>0)经过点E,
∴ab=$\sqrt{3}$,
∵四边形ABCD是菱形,
∴BD⊥AC,DO=$\frac{1}{2}$BD=2,
∵EN⊥x,EM⊥y,
∴四边形MENO是矩形,
∴ME∥x,EN∥y,
∵E为CD的中点,
∴DO•CO=4$\sqrt{3}$,![]()
∴CO=2$\sqrt{3}$,
∴tan∠DCO=$\frac{DO}{CO}$=$\frac{\sqrt{3}}{3}$,
∴∠DCO=30°,
∵四边形ABCD是菱形,
∴∠DAB=∠DCB=2∠DCO=60°,∠1=30°,AO=CO=2$\sqrt{3}$,
∵DF⊥AB,
∴∠2=30°,
∴DG=AG,
设DG=r,则AG=r,GO=2$\sqrt{3}$-r,
∵AD=AB,∠DAB=60°,
∴△ABD是等边三角形,
∴∠ADB=60°,
∴∠3=30°,
在Rt△DOG中,DG2=GO2+DO2,
∴r2=(2$\sqrt{3}$-r)2+22,
解得:r=$\frac{4\sqrt{3}}{3}$,
∴AG=$\frac{4\sqrt{3}}{3}$,
故选:A.
点评 此题主要考查了反比例函数和菱形的综合运用,关键是掌握菱形的性质:菱形对角线互相垂直平分,且平分每一组对角,反比例函数图象上的点横纵坐标之积=k.
| 里 程 | 收费(元) |
| 3km以下(含3km) | 5.00 |
| 3km以上,每增加1km | 1.20 |
| A. | 0 | B. | 18 | C. | 36 | D. | 72 |
| A. | ab+(c-a)a | B. | ac+(b-a)a | C. | ab+ac-a2 | D. | bc+ac-a2 |
| A. | 80 | B. | 10 | C. | 210 | D. | 40 |
| A. | m=3,n=-2 | B. | m=3,n=2 | C. | m=-3,n=-2 | D. | m=-3,n=2 |