题目内容

5.一种进价为每件40元的T恤,若销售单价为60元,则每周可卖出300件,为提高利益,就对该T恤进行涨价销售,经过调查发现,每涨价1元,每周要少卖出10件,请确定该T恤涨价后每周销售利润y(元)与销售单价x(元)之间的函数关系式,并求出销售单价定为多少元时,每周的销售利润最大?

分析 用每件的利润乘以销售量即可得到每周销售利润,即y=(x-40)[300-10(x-60)],再把解析式整理为一般式,然后根据二次函数的性质确定销售单价定为多少元时,每周的销售利润最大.

解答 解:根据题意得y=(x-40)[300-10(x-60)]
=-10x2+1300x-36000,
∵x-60≥0且300-10(x-60)≥0,
∴60≤x≤90,
∵a=-10<0,
而抛物线的对称轴为直线x=65,即当x>65时,y随x的增大而减小,
而60≤x≤90,
∴当x=65时,y的值最大,
即销售单价定为65元时,每周的销售利润最大.

点评 本题考查了二次函数的应用:利用二次函数解决利润问题,在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网