题目内容

1.方程组$\left\{\begin{array}{l}x+y=-6\\ xy=5\end{array}\right.$的解是$\left\{\begin{array}{l}{x=-5}\\{y=-1}\end{array}\right.$或$\left\{\begin{array}{l}{x=-1}\\{y=-5}\end{array}\right.$.

分析 方程组利用加减消元法求出解即可.

解答 解:$\left\{\begin{array}{l}{x+y=-6①}\\{xy=5②}\end{array}\right.$,
由①得:y=-x-6③,
把③代入②得:x(-x-6)=5,
解得:x=-5或x=-1,
把x=-5代入③得:y=-1,把x=-1代入③得:y=-5,
则方程组的解为$\left\{\begin{array}{l}{x=-5}\\{y=-1}\end{array}\right.$或$\left\{\begin{array}{l}{x=-1}\\{y=-5}\end{array}\right.$,
故答案为:$\left\{\begin{array}{l}{x=-5}\\{y=-1}\end{array}\right.$或$\left\{\begin{array}{l}{x=-1}\\{y=-5}\end{array}\right.$

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网