题目内容
5.求证:∠ABF=∠CBE.
分析 根据菱形的性质可得AB=BC,∠A=∠C,再证明△ABF≌△CBE,根据全等三角形的性质可得结论.
解答 证明:∵四边形ABCD是菱形,
∴AB=BC,∠A=∠C,
∵在△ABF和△CBE中,$\left\{\begin{array}{l}{AF=CE}&{\;}\\{∠A=∠C}&{\;}\\{AB=CB}&{\;}\end{array}\right.$,
∴△ABF≌△CBE(SAS),
∴∠ABF=∠CBE.
点评 此题主要考查了菱形的性质以及全等三角形的判定与性质,熟练掌握菱形的性质,证明三角形全等是解决问题的关键.
练习册系列答案
相关题目
15.某校组织甲、乙两队开展“保护生态环境知识竞赛”,满分为10分,得分均为整数,规定得分达到6分及以上为合格,达到9分及以上为优秀,如图是甲、乙两队学生这次竞赛成绩分布条形统计图.

根据以上信息,请解答下面的问题:
(1)在下面甲、乙两队的成绩统计表中,a=6.8,b=7.5c=6.
(2)小华同学说:“我在这次比赛中得到了7分,这在我所在的小队成绩中属于中等偏上的位置!”观察(1)中的表格,小华是甲队的学生;(填“甲”或“乙”)
(3)甲队同学认为:甲队的合格率、优秀率均高于乙队,所以甲队的成绩好于乙队.但乙队同学不同意甲队同学的说法,认为乙队的成绩要好于甲队.请你写出两条支持乙队同学观点的理由.
(4)学校要从从甲、乙两队获得优秀的学生中,选取两名同学参加市级比赛,则恰好同时选中的两人均为甲队学生的概率为$\frac{1}{3}$.
根据以上信息,请解答下面的问题:
(1)在下面甲、乙两队的成绩统计表中,a=6.8,b=7.5c=6.
| 平均分 | 中位数 | 众数 | 方差 | 合格率 | 优秀率 | |
| 甲队 | a | 6 | c | 2.76 | 90% | 20% |
| 乙队 | 7.2 | b | 8 | 1.36 | 80% | 10% |
(3)甲队同学认为:甲队的合格率、优秀率均高于乙队,所以甲队的成绩好于乙队.但乙队同学不同意甲队同学的说法,认为乙队的成绩要好于甲队.请你写出两条支持乙队同学观点的理由.
(4)学校要从从甲、乙两队获得优秀的学生中,选取两名同学参加市级比赛,则恰好同时选中的两人均为甲队学生的概率为$\frac{1}{3}$.
16.已知菱形的周长为4$\sqrt{5}$,两条对角线的和为6,则菱形的面积为( )
| A. | 2 | B. | $\sqrt{5}$ | C. | 3 | D. | 4 |
13.对于一组统计数据3,3,6,5,3.下列说法错误的是( )
| A. | 众数是3 | B. | 平均数是4 | C. | 方差是1.6 | D. | 中位数是6 |