题目内容

13.如图,Rt△ABC中,∠A=90°,AB=6,AC=8,点E为边AB上一点,AE=2,点F为线段AB上一点,且BF=3,过点E作AC的平行线交BC于点D,作直线FD交AC于点G,则FG=$\sqrt{265}$.

分析 根据已知条件得到AF=3,EF=1,由DE∥AC,得到△BED∽△ABC,根据相似三角形的性质得到$\frac{BE}{AB}=\frac{DE}{AC}$,即$\frac{4}{6}=\frac{DE}{8}$,求得DE=$\frac{16}{3}$,通过△DEF∽△GAF,得到$\frac{DE}{AG}=\frac{EF}{AF}$,于是得到AG=16,根据勾股定理即可得到结论.

解答 解:∵AB=6,BF=3,
∴AF=3,
∵AE=2,
∴EF=1,
∵DE∥AC,
∴△BED∽△ABC,
∴$\frac{BE}{AB}=\frac{DE}{AC}$,即$\frac{4}{6}=\frac{DE}{8}$,
∴DE=$\frac{16}{3}$,
∵DE∥AC,
∴△DEF∽△GAF,
∴$\frac{DE}{AG}=\frac{EF}{AF}$,
∴AG=16,
∴FG=$\sqrt{A{G}^{2}+A{F}^{2}}$=$\sqrt{265}$.
故答案为:$\sqrt{265}$.

点评 本题考查了相似三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网