ÌâÄ¿ÄÚÈÝ
4£®ÔĶÁÀí½â£º²ÄÁÏÒ»¡¢¶ÔÓÚ¶þ´ÎÈýÏîʽx2+2ax+a2¿ÉÒÔÖ±½ÓÓù«Ê½·¨·Ö½âΪ£¨x+a£©2µÄÐÎʽ£¬µ«¶ÔÓÚ¶þ´ÎÈýÏîʽx4-3x2+1£¬¾Í²»ÄÜÖ±½ÓÓù«Ê½·¨ÁË£¬ÎÒÃÇ¿ÉÒ԰Ѷþ´ÎÈýÏîʽx4-3x2+1ÖÐ3x2²ð³É2x2+x2£¬ÓÚÊÇ
ÓÐx4-3x2+1=x4-2x2-x2+1=x4-2x2+1-x2=£¨x2-1£©2-x2=£¨x2-x-1£©£¨x2+x-1£©£®
ÏñÉÏÃæÕâÑù°Ñ¶þ´ÎÈýÏîʽ·Ö½âÒòʽµÄ·½·¨½Ð²ðÏî·¨£®
£¨1£©ÇëÓÃÉÏÊö·½·¨¶Ô¶àÏîx4-7x2+9½øÐÐÒòʽ·Ö½â£»
²ÄÁ϶þ¡¢°ÑÒ»¸ö·Öʽд³ÉÁ½¸ö·ÖʽµÄºÍ½Ð×ö°ÑÕâ¸ö·Öʽ±íʾ³É²¿·Ö·Öʽ£¬ÈçºÎ½«$\frac{1-3x}{{x}^{2}-1}$±íʾ³É²¿·Ö·Öʽ£¿
Éè·Öʽ$\frac{1-3x}{{x}^{2}-1}$=$\frac{m}{x-1}$$+\frac{n}{x+1}$£¬½«µÈʽµÄÓÒ±ßͨ·ÖµÃ£º$\frac{m£¨x+1£©+n£¨x-1£©}{£¨x+1£©£¨x-1£©}$=$\frac{£¨m+n£©x+m-n}{£¨x+1£©£¨x-1£©}$
ÓÉ$\frac{1-3x}{{x}^{2}-1}$=$\frac{£¨m+n£©x+m-n}{£¨x-1£©£¨x+1£©}$µÃ$\left\{\begin{array}{l}{m+n=-3}\\{m-n=1}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{m=-1}\\{n=-2}\end{array}\right.$£¬ËùÒÔ$\frac{1-3x}{{x}^{2}-1}$=$\frac{-1}{x-1}$$+\frac{-2}{x+1}$£®
£¨2£©ÇëÓÃÉÏÊö·½·¨½«·Öʽ$\frac{4x-3}{£¨2x+1£©£¨x-2£©}$д³É²¿·Ö·ÖʽµÄºÍµÄÐÎʽ£®
·ÖÎö £¨1£©ÀûÓòðÏî·¨½øÐÐÒòʽ·Ö½â¼´¿É£»
£¨2£©¸ù¾Ý²ÄÁ϶þÌṩµÄ½âÌâ²½ÖèÓë·½·¨½øÐнâ´ð£®
½â´ð ½â£º£¨1£©x4-7x2+9£¬
=x4-6x2+9-x2£¬
=£¨x2-3£©2-x2£¬
=£¨x2-3+x£©£¨x2-3-x£©£»
£¨2£©Éè·Öʽ$\frac{4x-3}{£¨2x+1£©£¨x-2£©}$=$\frac{m}{2x+1}$-$\frac{n}{x-2}$£¬
½«µÈʽµÄÓÒ±ßͨ·ÖµÃ£º$\frac{m£¨x-2£©-n£¨2x+1£©}{£¨2x+1£©£¨x-2£©}$=$\frac{£¨m-2n£©x-£¨2m+n£©}{£¨2x+1£©£¨x-2£©}$£¬
ÓÉ$\frac{4x-3}{£¨2x+1£©£¨x-2£©}$=$\frac{£¨m-2n£©x-£¨2m+n£©}{£¨2x+1£©£¨x-2£©}$µÃ$\left\{\begin{array}{l}{m-2n=4}\\{2m+n=3}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{m=2}\\{n=-1}\end{array}\right.$£¬
ËùÒÔ$\frac{4x-3}{£¨2x+1£©£¨x-2£©}$=$\frac{2}{2x+1}$+$\frac{1}{x-2}$£®
µãÆÀ ±¾Ì⿼²éÁËÒòʽ·Ö½âµÄÓ¦Óã®ÊìϤ²ÄÁÏÌṩµÄ½âÌâ·½·¨ºÍ²½ÖèÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
19£®²»µÈʽ$\left\{\begin{array}{l}{2x-1£¾-3}\\{4-\frac{1}{3}x¡Ý2}\end{array}\right.$µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
| A£® | x¡Ý6 | B£® | -1¡Üx£¼6 | C£® | -1£¼x¡Ü6 | D£® | x£¼-1 |