题目内容
7.先化简再求值$\frac{1}{a+1}$-$\frac{a+3}{{a}^{2}-1}$×$\frac{{a}^{2}-2a+1}{{a}^{2}+4a+3}$,已知a2+2a-7=0.分析 先根据题意得出a2+2a=7,再根据分式混合运算的法则把原式进行化简,把a2+2a=7代入进行计算即可.
解答 解:∵a2+2a-7=0,
∴a2+2a=7,
∴原式=$\frac{1}{a+1}$-$\frac{a+3}{(a+1)(a-1)}$•$\frac{(a-1)^{2}}{(a+1)(a+3)}$
=$\frac{1}{a+1}$-$\frac{a-1}{(a+1)^{2}}$
=$\frac{a+1-a+1}{{(a+1)}^{2}}$
=$\frac{2}{{(a+1)}^{2}}$
=$\frac{2}{{a}^{2}+2a+1}$,
当a2+2a=7时,原式=$\frac{2}{7+1}$=$\frac{1}{4}$.
点评 本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
练习册系列答案
相关题目
2.近几年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.
对雾霾了解程度的统计表:
请结合统计图表,回答下列问题.
(1)本次参与调查的学生共有400人,m=15%,n=35%;
(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是126度;
(3)请补全图1示数的条形统计图;
(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.
对雾霾了解程度的统计表:
| 对雾霾的了解程度 | 百分比 |
| A.非常了解 | 5% |
| B.比较了解 | m |
| C.基本了解 | 45% |
| D.不了解 | n |
(1)本次参与调查的学生共有400人,m=15%,n=35%;
(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是126度;
(3)请补全图1示数的条形统计图;
(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.
16.
如图,已知AB∥CD,直线EF分别交 AB、CD于点E,F,EG平分∠BEF交CD于点G.如果∠1=70°,那么∠2的度数是( )
| A. | 70° | B. | 65° | C. | 55° | D. | 22.5° |