题目内容
9.下列式子中,属于最简二次根式的是( )| A. | $\sqrt{9}$ | B. | $\sqrt{20}$ | C. | $\sqrt{7}$ | D. | $\sqrt{0.2}$ |
分析 根据直角二次根式满足的两个条件进行判断即可.
解答 解:$\sqrt{9}$=3被开方数中含能开得尽方的因数,不是最简二次根式;
$\sqrt{20}$=2$\sqrt{5}$被开方数中含能开得尽方的因数,不是最简二次根式;
$\sqrt{7}$是最简二次根式;
$\sqrt{0.2}$=$\sqrt{\frac{1}{5}}$=$\frac{\sqrt{5}}{5}$被开方数中含分母,不是最简二次根式,
故选:C.
点评 本题考查的是最简二次根式的概念,满足(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式两个条件的二次根式是最简二次根式.
练习册系列答案
相关题目
20.不为0的两个数的差若是正数,那么( )
| A. | 被减数为正数,减数为负数 | |
| B. | 被减数与减数都是正数,且被减数大于减数 | |
| C. | 被减数与减数都是负数,且减数的绝对值较大 | |
| D. | 以上A、B、C必有一种成立 |
4.如果$\sqrt{2x-5}$是2x-5的算术平方根,则x的取值范围是( )
| A. | x$≥\frac{5}{2}$ | B. | x=$\frac{5}{2}$ | C. | x$≤\frac{5}{2}$ | D. | x$≠\frac{5}{2}$ |
1.每个花盆植3株花卉,则每株盈利4元;每个花盆增加1株花卉,平均每株盈利减少0.5元,要使每盆盈利为15元,设每盆多植x株,则x满足方程( )
| A. | (3+x)(4-0.5x)=15 | B. | (x+3)(4+0.5x)=15 | C. | (x+4)(3-0.5x)=15 | D. | (x+1)(4-0.5x)=15 |