题目内容

完成下面推理过程:
如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.
理由如下:
∵AD⊥BC于D,EG⊥BC于G,
 

∴∠ADC=∠EGC=90°,
 

∴AD∥EG,
 

∴∠1=∠2,
 

∠3=
 

又∵∠E=∠1(已知),
 
=
 

∴AD平分∠BAC
 
考点:平行线的判定与性质,垂线
专题:推理填空题
分析:根据平行线的判定与性质进行解答即可.
解答:解:∵AD⊥BC于D,EG⊥BC于G (已知)
∴∠ADC=∠EGC=90°(垂直的意义)
∴AD∥EG,(同位角相等,两直线平行).
∴∠1=∠2,(两直线平行,内错角相等).
∠E=∠3(两直线平行,同位角相等)
又∵∠E=∠1(已知)
∴∠2=∠3,.
∴AD平分∠BAC.(角平分线的定义)
故答案为:已知;垂直的意义;同位角相等,两直线平行;两直线平行,内错角相等;∠E;∠2,∠3;角平分线的定义.
点评:本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;两直线平行,内错角相等,同位角相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网