题目内容

2.如图,在等边△ABC中,点D在边AB上,点E在边AC上,∠A=60°,且AD=CE,BE与CD相交于F,则∠BFC的度数为120°.

分析 根据等边三角形的性质得到∠A=∠BCE=60°,AC=BC,而AD=CE,根据全等三角形的判定得到△ACD≌△CBE,得到∠ACD=∠CBE,而∠ACD+∠FCB=60°,则∠CBE+∠FCB=60°,根据三角形的内角和定理即可得到∠BFC的度数.

解答 证明:∵△ABC是等边三角形,
∴∠A=∠BCE=60°,AC=BC,
在△ACD和△CBE中,
$\left\{\begin{array}{l}{AD=CE}\\{∠A=∠BCE}\\{AC=BC}\end{array}\right.$,
∴△ACD≌△CBE;
∴∠ACD=∠CBE,
而∠ACD+∠FCB=60°,
∴∠CBE+∠FCB=60°,
∴∠BFC=180°-(∠CBE+∠FCB)=180°-60°=120°.
故答案为120°.

点评 本题考查了全等三角形的判定与性质:有两组对应边相等,并且它们的夹角也相等的两个三角形全等;全等三角形的对应角相等.也考查了等边三角形的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网