题目内容
.
如图,在Rt△ABC中,∠C=90°,∠BAC=60°,BC=,将△ABC绕点A逆时针旋转60°后得到△ADE,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是__________(结果保留π).
为了响应国家“自主创业”的号召,某大学毕业生开办了一个装饰品商店,采购了一种今年刚上市的饰品进行了30天的试销,购进价格为20元/件,销售结束后,得知日销售量P(件)与销售时间x(天)之间的关系如图(1)所示,销售价格Q(元/件)与销售时间x(天)之间的关系如图(2)所示.
(1)根据图象直接写出:日销售量P(件)与销售时间x(天)之间的函数关系式为 ;销售单价
Q(元/件)与销售时间x(天)的函数关系式为 .(不要求写出自变量的取值范围)
(2)写出该商品的日销售利润W(元)和销售时间x(天)之间的函数关系式;(不要求写出自变量的取值范围)
(3)请问在30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润.
将抛物线y=x2+1向左平移2个单位,再向下平移3个单位,得到的抛物线的函数表达式为( )
A. y=(x﹣2)2+4 B. y=(x﹣2)2﹣2
C. y=(x+2)2+4 D. y=(x+2)2﹣2
某百货商店服装柜在销售中发现:某品牌童装每天可售出20件,每件盈利40元,经市场调查发现,在进货价不变的情况下,若每件童装每降价1元,日销售量将增加2件.
(1)当每件童装降价多少元时,一天的盈利最多?
(2)若商场要求一天的盈利为1200元,同时又使顾客得到实惠,每件童装降价多少元?
用不等号“>”或“<”连接:sin50°_____cos50°.
把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )
A. y=﹣2(x+1)2+1 B. y=﹣2(x﹣1)2+1 C. y=﹣2(x﹣1)2﹣1 D. y=﹣2(x+1)2﹣1
如图,图中的线段共有________条,直线共有________条.
如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.求人行通道的宽度.