题目内容
7.| A. | $\frac{{2\sqrt{13}}}{13}$ | B. | $\frac{{3\sqrt{13}}}{13}$ | C. | $\frac{3}{2}$ | D. | $\frac{2}{3}$ |
分析 直接根据锐角三角函数的定义即可得出结论.
解答
解:∵AD⊥BC,AD=3,BD=2,
∴tanα=$\frac{AD}{BD}$=$\frac{3}{2}$.
故选C.
点评 本题考查的是锐角三角函数的定义,熟记锐角三角函数的定义是解答此题的关键.
练习册系列答案
相关题目
15.若函数y=$\frac{x-2}{{x}^{2}-1}$的函数值为0,则自变量x的值为( )
| A. | 2 | B. | -1 | C. | ±1 | D. | 1 |
19.在学习“用直尺和圆规作一个角等于已知角”时,教科书介绍如下:

作法:
(1)如图所示,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;
(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;
(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧相交于点D′;
(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB
对于“想一想”中的问题,下列回答正确的是( )
作法:
(1)如图所示,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;
(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;
(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧相交于点D′;
(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB
对于“想一想”中的问题,下列回答正确的是( )
| A. | 根据“边边边”可知,△C′O′D′≌△COD,所以∠A′O′B′=∠AOB | |
| B. | 根据“边角边”可知,△C′O′D′≌△COD,所以∠A′O′B′=∠AOB | |
| C. | 根据“角边角”可知,△C′O′D′≌△COD,所以∠A′O′B′=∠AOB | |
| D. | 根据“角角边”可知,△C′O′D′≌△COD,所以∠A′O′B′=∠AOB |