题目内容
10.观察下列等式:①$\frac{1}{1+\sqrt{2}}$=$\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}$-1;
②$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\sqrt{3}$-$\sqrt{2}$;
③$\frac{1}{\sqrt{4}+\sqrt{3}}$=$\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}$=$\sqrt{4}$-$\sqrt{3}$;
…
利用你观察到的规律,化简:$\frac{1}{\sqrt{23}+\sqrt{22}}$.
分析 根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.
解答 解:原式=$\frac{\sqrt{23}-\sqrt{22}}{(\sqrt{23}+\sqrt{22})(\sqrt{23}-\sqrt{22})}$=$\sqrt{23}$-$\sqrt{22}$.
点评 主要考查二次根式的有理化,利用二次根式的乘除法法则进行二次根式有理化,二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.
练习册系列答案
相关题目