题目内容

如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=5,EC=3,则DE的长为(  )
A、2B、3C、4D、5
考点:勾股定理,等腰三角形的判定与性质,直角三角形斜边上的中线
专题:计算题
分析:由AD与BC平行,且DE垂直于BC,得到DE垂直于AD,在直角三角形AED中,利用斜边上的中线等于斜边的一半,得到DG=GF,作GH⊥DE,利用三线合一得到GH为角平分线,再由∠ACD=2∠ACB,等量代换得到∠DGF=∠ACD,等角对等边得到DG=DC=5,在直角三角形CDE中,利用勾股定理求出DE的长即可.
解答: 解:∵AD∥BC,DE⊥BC,
∴∠ADF=∠DEC=90°,
∵点G是AF的中点,
∴DG=GF,
作GH⊥DE于H,则GH∥BC,
∵∠HGF=∠ACB,
∵∠DGF=2∠HGF,∠ACD=2∠ACB,
∴∠DGF=∠ACD,
∴CD=DG=5,
又∵∠DEC=90°,EC=3,
∴DE=
CD2-EC2
=4.
故选C
点评:此题考查了勾股定理,等腰三角形的性质,平行线的性质,熟练掌握勾股定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网