题目内容

5.如图,已知线段AB∥CD,AD与BC相交于点K,∠ABC的角平线分BE交AD于E,当AE=$\frac{1}{2}$AD时,猜想线段AB、BC、CD三者之间有怎样的等量关系?请写出你的结论并予以证明.

分析 AB=BC+CD.作△ABD的中位线,由中位线定理得EF∥AB∥CD,可知G为BC的中点,由平行线及角平分线性质得∠GEB=∠EBA=∠GBE,则EG=BG=$\frac{1}{2}$BC,而GF=$\frac{1}{2}$CD,EF=$\frac{1}{2}$AB,利用EF=EG+GF求线段AB、BC、CD三者之间的数量关系.

解答 解:猜想:AB=BC+CD,
证明:取BD的中点为F,连接EF交BC于G点,
由中位线定理,得EF∥AB∥CD,
∴G为BC的中点,∠GEB=∠EBA,
又∵∠EBA=∠GBE,
∴∠GEB=∠GBE,
∴EG=BG=$\frac{1}{2}$BC,而GF=$\frac{1}{2}$CD,EF=$\frac{1}{2}$AB,
∵EF=EG+GF,
即:$\frac{1}{2}$AB=$\frac{1}{2}$BC+$\frac{1}{2}$CD;
∴AB=BC+CD.

点评 本题考查了平行线的性质,三角形中位线定理,角平分线的性质等知识,解题的关键是学会添加常用辅助线,利用三角形中位线定理解决问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网