题目内容
4.(1)求证:△ABE≌△CBF;
(2)若∠CAE=25°,求∠BFC度数.
分析 (1)根据HL证明Rt△ABE≌Rt△CBF;
(2)因为△ABC是等腰直角三角形,所以∠BAC=45°,得∠BAE=20°,由(1)中的全等得:∠BCF=∠BAE=20°,从而得出结论.
解答 (1)证明:∵∠ABC=90°,
∴∠ABC=∠CBF=90°,
在Rt△ABE和Rt△CBF中,
∵$\left\{\begin{array}{l}{AE=CF}\\{AB=CB}\end{array}\right.$,
∴Rt△ABE≌Rt△CBF(HL);
(2)解:∵AB=CB,∠ABC=90°,
∴∠CAB=∠ACB=45°,
∵∠CAE=25°,
∴∠BAE=45°-25°=20°,
∵Rt△ABE≌Rt△CBF,
∴∠BCF=∠BAE=20°,
∴∠BFC=90°-20°=70°.
点评 本题考查了等腰直角三角形的性质和直角三角形全等的性质和判定,知道等腰直角三角形的两个锐角是45°,除了熟知三角形一般的全等判定方法外,还要掌握直角三角形的全等判定HL:即有一直角边和斜边对应相等的两直角三角形全等.
练习册系列答案
相关题目
15.3.12植树节,某校决定组织甲乙两队参加义务植树活动,并购买队服.表是服装厂给出的服装的价格表:
经调查:两个队共75人(甲队人数不少于40人),如果分别各自购买队服,两队共需花费5600元,请回答以下问题:
(1)如果甲、乙两队联合起来购买服装,那么比各自购买服装最多可以节省800元.
(2)甲、乙两队各有多少名学生?
(3)到了现场,因工作分配需要,临时决定从甲队抽调a人,从乙队抽调b人,组成丙队(要求从每队抽调的人数不少于10人).现已知重新组队后,甲队平均每人需植树1棵;乙队平均每人需植树4棵;丙队平均每人需植树6棵,甲乙丙三队共需植树265棵,请直接写出所有的抽调方案.
| 购买服装的套数 | 1~39套 | 40~79套 | 80套及以上 |
| 每套服装的价格 | 80元 | 70元 | 60元 |
(1)如果甲、乙两队联合起来购买服装,那么比各自购买服装最多可以节省800元.
(2)甲、乙两队各有多少名学生?
(3)到了现场,因工作分配需要,临时决定从甲队抽调a人,从乙队抽调b人,组成丙队(要求从每队抽调的人数不少于10人).现已知重新组队后,甲队平均每人需植树1棵;乙队平均每人需植树4棵;丙队平均每人需植树6棵,甲乙丙三队共需植树265棵,请直接写出所有的抽调方案.