ÌâÄ¿ÄÚÈÝ
3£®ÏÂÁз½³Ì£¨×飩ÖУ¬¢Ùx+2=0 ¢Ú3x-2y=1 ¢Ûxy+1=0 ¢Ü2x-$\frac{1}{x}$=1 ¢Ý$\left\{\begin{array}{l}{x+y=1}\\{x-y=3}\end{array}\right.$ ¢Þ$\left\{\begin{array}{l}{2x-y=0}\\{x+z=1}\end{array}\right.$ÊÇÒ»ÔªÒ»´Î·½³ÌµÄÊÇ¢Ù£¬ÊǶþÔªÒ»´Î·½³ÌµÄÊÇ¢Ú£¬ÊǶþÔªÒ»´Î·½³Ì×éµÄÊǢݣ®·ÖÎö ¸ù¾ÝÒ»ÔªÒ»´Î·½³ÌÊÇÕûʽ·½³ÌÖÐÖ»º¬ÓÐÒ»¸öδ֪ÊýÇÒδ֪ÊýµÄ×î¸ß´ÎÊýÊÇÒ»´ÎµÄ·½³Ì£¬Õûʽ·½³ÌÖк¬ÓÐÁ½¸öδ֪ÊýÇÒδ֪ÊýµÄ´ÎÊýÊÇ1´ÎµÄ·½³Ì£¬×é³É¶þÔªÒ»´Î·½³Ì×éµÄÁ½¸ö·½³ÌÓ¦¹²º¬ÓÐÁ½¸öδ֪Êý£¬ÇÒδ֪ÊýµÄÏî×î¸ß´ÎÊý¶¼Ó¦ÊÇÒ»´ÎµÄÕûʽ·½³Ì£®
½â´ð ½â£º¢Ùx+2=0 ¢Ú3x-2y=1 ¢Ûxy+1=0 ¢Ü2x-$\frac{1}{x}$=1 ¢Ý$\left\{\begin{array}{l}{x+y=1}\\{x-y=3}\end{array}\right.$ ¢Þ$\left\{\begin{array}{l}{2x-y=0}\\{x+z=1}\end{array}\right.$ÊÇÒ»ÔªÒ»´Î·½³ÌµÄÊÇ¢Ù£¬ÊǶþÔªÒ»´Î·½³ÌµÄÊÇ¢Ú£¬ÊǶþÔªÒ»´Î·½³Ì×éµÄÊǢݣ®
¹Ê´ð°¸Îª£º¢Ù£»¢Ú£»¢Ý£®
µãÆÀ ±¾Ì⿼²éÁ˶þÔªÒ»´Î·½³Ì×éµÄ¶¨Ò壬Êì¼ÇÒ»ÔªÒ»´Î·½³Ì£¬¶þÔªÒ»´Î·½³ÌÊǽâÌâ¹Ø¼ü£¬×¢Òâ¶þÔªÒ»´Î·½³Ì×éµÄ¶¨Òå¡°ÓÉÁ½¸ö¶þÔªÒ»´Î·½³Ì×é³ÉµÄ·½³Ì×顱£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
13£®Èô9x2-£¨k+1£©x+4ÊÇÍêȫƽ·½Ê½£¬ÔòkµÄֵΪ£¨¡¡¡¡£©
| A£® | ¡À11 | B£® | 11»ò-13 | C£® | 11 | D£® | -11 |
18£®Èý¸öÁ¬ÐøÆæÊýÖ®ºÍΪ15£¬ÔòËüÃÇÖ®»ýΪ£¨¡¡¡¡£©
| A£® | 15 | B£® | 21 | C£® | 105 | D£® | -105 |