题目内容

14.如图,菱形ABCD中,AB=4,∠B=60°,E,F分别是BC,DC上的点,∠EAF=
60°,连接EF,则△AEF的面积最小值是3$\sqrt{3}$.

分析 首先由△ABC是等边三角形,即可得AB=AC,以求得∠ACF=∠B=60°,然后利用平行线与三角形外角的性质,可求得∠AEB=∠AFC,证得△AEB≌△AFC,即可得AE=AF,证得△AEF是等边三角形,当AE⊥BC时得出△AEF的面积最小值即可.

解答 解:当AE⊥BC时,
∵△ABC是等边三角形,
∴AB=AC,∠ACB=60°,
∴∠B=∠ACF=60°,
∵AD∥BC,
∴∠AEB=∠EAD=∠EAF+∠FAD=60°+∠FAD,
∠AFC=∠D+∠FAD=60°+∠FAD,
∴∠AEB=∠AFC,
在△ABE和△ACF中,
$\left\{\begin{array}{l}{∠B=∠ACF}\\{∠AEB=∠AFC}\\{AB=AC}\end{array}\right.$,
∴△ABE≌△ACF(AAS),
∴AE=AF,
∵∠EAF=60°,
∴△AEF是等边三角形,
∵当AE⊥BC时,AB=4,
∴AE=$2\sqrt{3}$,
∴△AEF的面积最小值=$\frac{1}{2}×\sqrt{3}×\sqrt{3}×2\sqrt{3}=3\sqrt{3}$,
故答案为:$3\sqrt{3}$.

点评 此题考查了菱形的性质,关键是根据等边三角形的判定与性质、全等三角形的判定与性质解答.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网