题目内容
16.分析 根据垂直的定义得到∠AEB=∠AEC=∠DFB=∠DFC=90°,推出Rt△ABE≌Rt△DCF,根据全等三角形的性质得到BE=CF,推出BF=CE,证得△AEC≌△DFB,根据全等三角形的性质即可的结论.
解答 证明:∵AE⊥BC,DF⊥BC,
∴∠AEB=∠AEC=∠DFB=∠DFC=90°,
在Rt△ABE与Rt△DCF中,
$\left\{\begin{array}{l}{AB=CD}\\{AE=DF}\end{array}\right.$,
∴Rt△ABE≌Rt△DCF,
∴BE=CF,
∴BF=CE,
在△AEC与△BDF中,
$\left\{\begin{array}{l}{AE=DF}\\{∠AEF=∠DFB}\\{CE=BF}\end{array}\right.$,
∴△AEC≌△DFB,
∴AC=DB.
点评 本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.
练习册系列答案
相关题目
5.下列方程是一元二次方程的是( )
| A. | x+y=5 | B. | 3x2-2x=1 | C. | x=$\frac{1}{x}$ | D. | $\frac{1}{3}x+2=0$ |