题目内容

15.完成下面的证明过程:
已知:如图,∠D=123°,∠EFD=57°,∠1=∠2
求证:∠3=∠B
证明:∵∠D=123°,∠EFD=57°(已知)
∴∠D+∠EFD=180°
∴AD∥EF(同旁内角互补,两直线平行)
又∵∠1=∠2(已知)
∴AD∥BC(内错角相等,两直线平行)
∴EF∥BC(平行于同一条直线的两直线平行)
∴∠3=∠B(两直线平行,同位角相等)

分析 求出∠D+∠EFD=180°,根据平行线的判定得出AD∥EF和 AD∥BC,即可得出EF∥BC,根据平行线的性质得出即可.

解答 证明:∵∠D=123°,∠EFD=57°(已知),
∴∠D+∠EFD=180°,
∴AD∥EF(同旁内角互补,两直线平行),
又∵∠1=∠2(已知)
∴AD∥BC(内错角相等,两直线平行)
∴EF∥BC(平行于同一条直线的两直线平行),
∴∠3=∠B(两直线平行,同位角相等),
故答案为:EF,同旁内角互补,两直线平行,AD,BC,平行于同一条直线的两直线平行.

点评 本题考查了平行线的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网