题目内容
当m,n是正实数,且满足m+n=mn时,就称点P(m,
)为“完美点”,已知点A(0,5)与点M都在直线y=-x+b上,点B,C是“完美点”,且点B在线段AM上,若MC=
,AM=4
,求△MBC的面积.
| m |
| n |
| 3 |
| 2 |
考点:一次函数综合题,直角三角形的性质,勾股定理的应用
专题:新定义
分析:由m+n=mn变式为
=m-1,可知P(m,m-1),所以在直线y=x-1上,点A(0,5)在直线y=-x+b上,求得直线AM:y=-x+5,进而求得B(3,2),根据直线平行的性质从而证得直线AM与直线y=x-1垂直,然后根据勾股定理求得BC的长,从而求得三角形的面积.
| m |
| n |
解答:
解:∵m+n=mn且m,n是正实数,
∴
+1=m,即
=m-1,
∴P(m,m-1),
即“完美点”B在直线y=x-1上,
∵点A(0,5)在直线y=-x+b上,
∴b=5,
∴直线AM:y=-x+5,
∵“完美点”B在直线AM上,
∴由
解得
,
∴B(3,2),
∵一、三象限的角平分线y=x垂直于二、四象限的角平分线y=-x,而直线y=x-1与直线y=x平行,直线y=-x+5与直线y=-x平行,
∴直线AM与直线y=x-1垂直,
∵点B是直线y=x-1与直线AM的交点,
∴垂足是点B,
∵点C是“完美点”,
∴点C在直线y=x-1上,
∴△MBC是直角三角形,
∵B(3,2),A(0,5),
∴AB=3
,
∵AM=4
,
∴BM=
,
又∵CM=
,
∴BC=1,
∴S△MBC=
BM•BC=
.
∴
| m |
| n |
| m |
| n |
∴P(m,m-1),
即“完美点”B在直线y=x-1上,
∵点A(0,5)在直线y=-x+b上,
∴b=5,
∴直线AM:y=-x+5,
∵“完美点”B在直线AM上,
∴由
|
|
∴B(3,2),
∵一、三象限的角平分线y=x垂直于二、四象限的角平分线y=-x,而直线y=x-1与直线y=x平行,直线y=-x+5与直线y=-x平行,
∴直线AM与直线y=x-1垂直,
∵点B是直线y=x-1与直线AM的交点,
∴垂足是点B,
∵点C是“完美点”,
∴点C在直线y=x-1上,
∴△MBC是直角三角形,
∵B(3,2),A(0,5),
∴AB=3
| 2 |
∵AM=4
| 2 |
∴BM=
| 2 |
又∵CM=
| 3 |
∴BC=1,
∴S△MBC=
| 1 |
| 2 |
| ||
| 2 |
点评:本题考查了一次函数的性质,直角三角形的判定,勾股定理的应用以及三角形面积的计算等,判断直线垂直,借助正比例函数是本题的关键.
练习册系列答案
相关题目