题目内容

2.用加减消元法解下列方程组.
(1)$\left\{\begin{array}{l}{2x+y=-2}\\{x-3y=6}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{5x-3y=2}\\{4y+2x=6}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{4x+3y+2=0}\\{7x+6y+5=0}\end{array}\right.$;
(4)$\left\{\begin{array}{l}{\frac{x-1}{3}=\frac{2y+3}{4}}\\{4x-3y=7}\end{array}\right.$.

分析 (1)方程组利用加减消元法求出解即可;
(2)方程组利用加减消元法求出解即可;
(3)方程组整理后,利用加减消元法求出解即可;
(4)方程组整理后,利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{2x+y=-2①}\\{x-3y=6②}\end{array}\right.$,
①×3+②得;7x=0,即x=0,
把x=0代入①得:y=-2,
则方程组的解为$\left\{\begin{array}{l}{x=0}\\{y=-2}\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{5x-3y=2①}\\{x+2y=3②}\end{array}\right.$,
②×5-①得:13y=13,即y=1,
把y=1代入①得:x=1,
则方程组的解为$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$;
(3)方程组整理得:$\left\{\begin{array}{l}{4x+3y=-2①}\\{7x+6y=-5②}\end{array}\right.$,
①×2-②得:x=1,
把x=1代入①得:y=-2,
则方程组的解为$\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$;
(4)方程组整理得:$\left\{\begin{array}{l}{4x-6y=13①}\\{4x-3y=7②}\end{array}\right.$,
②-①得:3y=-6,即y=-2,
把y=-2代入②得:x=$\frac{1}{4}$,
则方程组的解为$\left\{\begin{array}{l}{x=\frac{1}{4}}\\{y=-2}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网