题目内容

如图,在Rt△ABC中,∠ACB=90°,AC=6,CB=8,AD是△ABC的角平分线,过A,D,C三点的圆与斜边AB交于点E,连接DE.
(1)求证:AC=AE;
(2)求△ACD外接圆的直径.
考点:三角形的外接圆与外心,全等三角形的判定与性质,勾股定理
专题:
分析:(1)先根据:∠ACB=90°得出AD为⊙O的直径故可得出∠ACB=∠AED.再由AD是△ABC中∠BAC的平分线可知∠CAD=∠EAD,由HL定理得出△ACD≌△AED,根据全等三角形的性质可知AC=AE;
(2)先根据勾股定理求出AB的长,设CD=DE=x,则DB=BC-CD=8-x,EB=AB-AE=10-6=4,在Rt△BED中,根据勾股定理得出x的值,再由△ACD是直角三角形即可得出AD的长.
解答:(1)证明:∵∠ACB=90°,且∠ACB为⊙O的圆周角,
∴AD为⊙O的直径,
∴∠AED=90°,
∴∠ACB=∠AED.
∵AD是△ABC中∠BAC的平分线,
∴∠CAD=∠EAD,
∴CD=DE,
在Rt△ACD与Rt△AED中,
AD=AD
CD=ED

∴△ACD≌△AED(HL),
∴AC=AE;

(2)∵△ABC是直角三角形,且AC=6,BC=8,
∴AB=
AC2+BC2
=
62+82
=10,
∵由(1)得,∠AED=90°,
∴∠BED=90°.
设CD=DE=x,则DB=BC-CD=8-x,EB=AB-AE=10-6=4,
在Rt△BED中,根据勾股定理得,BE2=BE2+ED2,即(8-x)2=x2+42,解得x=3,
∴CD=3,
∵AC=6,△ACD是直角三角形,
∴AD2=AC2+CD2=62+32=45,
∴AD=3
5
点评:本题考查的是三角形的外接圆与外心,熟知直径所对的圆周角是直角是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网