题目内容

14.如图,PA,PB分别与⊙O相切于A,B两点,∠P=70°,则∠C为(  )
A.55°B.70°C.110°D.140°

分析 连接OA、OB,根据切线的性质定理,结合四边形AOBP的内角和为360°,即可推出∠AOB的度数,然后根据圆周角定理,即可推出∠C的度数.

解答 解:连接OA、OB,
∵直线PA、PB分别与⊙O相切于点A、B,
∴OA⊥PA,OB⊥PB,
∵∠P=70°,
∴∠AOB=110°,
∵C是⊙O上一点,
∴∠ACB=55°.
故选A.

点评 本题主要考查切线的性质、四边形的内角和、圆周角定理,关键在于熟练运用切线的性质,通过作辅助线构建四边形,最后通过圆周角定理即可推出结果.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网