题目内容

2.如图,矩形ABCD中,AB=4,BC=3,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为2.4.

分析 由折叠的性质得出EP=AP,∠E=∠A=90°,BE=AB=4,由ASA证明△ODP≌△OEG,得出OP=OG,PD=GE,设AP=EP=x,则PD=GE=3-x,DG=x,求出CG、BG,根据勾股定理得出方程,解方程即可.

解答 解:如图所示:∵四边形ABCD是矩形,
∴∠D=∠A=∠C=90°,AD=BC=3,CD=AB=4,
根据题意得:△ABP≌△EBP,
∴EP=AP,∠E=∠A=90°,BE=AB=4,
在△ODP和△OEG中,
$\left\{\begin{array}{l}{∠D=∠E}&{\;}\\{OD=OE}&{\;}\\{∠DOP=∠EOG}&{\;}\end{array}\right.$,
∴△ODP≌△OEG(ASA),
∴OP=OG,PD=GE,
∴DG=EP,
设AP=EP=x,则PD=GE=3-x,DG=x,
∴CG=4-x,BG=4-(3-x)=1+x,
根据勾股定理得:BC2+CG2=BG2
即32+(4-x)2=(x+1)2
解得:x=2.4,
∴AP=2.4;
故答案为:2.4.

点评 本题考查了矩形的性质、折叠的性质、全等三角形的判定与性质、勾股定理;熟练掌握翻折变换和矩形的性质,由勾股定理得出方程是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网