ÌâÄ¿ÄÚÈÝ
8£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Å×ÎïÏßy=2x2+mx+n¾¹ýµãA£¨0£¬-2£©£¬B£¨3£¬4£©£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£¬¶Ô³ÆÖáºÍ¶¥µã£»
£¨2£©ÉèµãB¹ØÓÚÔµãµÄ¶Ô³ÆµãΪC£¬¼ÇÅ×ÎïÏßÔÚA¡¢BÖ®¼äµÄ²¿·ÖΪͼÏóG£¨°üÀ¨A¡¢BÁ½µã£©
¢ÙµãDÊÇÅ×ÎïÏß¶Ô³ÆÖáÉÏÒ»¶¯µã£¬ÈôÖ±ÏßCDÓëͼÏóGÓй«¹²µã£¬½áºÏº¯ÊýͼÏó£¬ÇóµãD×Ý×ø±êtµÄȡֵ·¶Î§£®
¢ÚµãEÊÇͼÏóGÉÏÒ»¶¯µã£¬¶¯µãEÓëµãB£¬µãC¹¹³ÉÎÞÊý¸öÈý½ÇÐΣ¬ÔÚÕâЩÈý½ÇÐÎÖдæÔÚÒ»¸öÃæ»ý×î´óµÄÈý½ÇÐΣ¬Çó³öÕâ¸öÈý½ÇÐεÄÃæ»ý£¬²¢Çó³ö´ËʱµãEµÄ×ø±ê£®
·ÖÎö £¨1£©Ö±½Ó°ÑAµãºÍBµã×ø±ê´úÈëy=2x2+mx+nµÃm¡¢nµÄ·½³Ì×飬Ôٽⷽ³Ì×éÇó³öm¡¢n¼´¿ÉµÃµ½Å×ÎïÏß½âÎöʽ£¬È»ºó°Ñ½âÎöʽÅä³É¶¥µãʽ¼´¿ÉµÃµ½Å×ÎïÏߵĶԳÆÖáºÍ¶¥µã×ø±ê£»
£¨2£©¢ÙÏÈÀûÓùØÓÚÔµã¶Ô³ÆµÄµãµÄ×ø±êÌØÕ÷µÃµ½Cµã×ø±êΪ£¨-3£¬-4£©£¬Èçͼ£¬¶ø¶¥µãM£¨1£¬-4£©£¬ÉèÖ±ÏßBC½»Ö±Ïßx=1ÓÚNµã£¬Óôý¶¨ÏµÊý·¨Çó³öÖ±ÏßBCµÄ½âÎöʽΪy=$\frac{4}{3}$x£¬ÓÉÓÚµ±µãDÔÚÏß¶ÎMNÉÏÔ˶¯Ê±£¬Ö±ÏßCDÓëͼÏóGÓй«¹²µã£¬ÓÚÊǿɵÃtµÄ·¶Î§Îª-4¡Üt¡Ü$\frac{4}{3}$£»¢Ú¸ù¾ÝÈý½ÇÐÎÃæ»ý¹«Ê½£¬¡÷EBCµÄÃæ»ý×î´ó£¬ÔòEµãµ½BCµÄ¾àÀë×î´ó£¬¶ø¹ýµãEƽÐÐÓÚBCÇÒÓëÅ×ÎïÏßÖ»ÓÐÒ»¸ö¹«¹²µãʱ£¬µãEµ½BCµÄ¾àÀë×î´ó£¬Éè¹ýµãEµÄÖ±Ïß½âÎöʽΪy=$\frac{4}{3}$x+b£¬¸ù¾ÝÅ×ÎïÏßÓëÖ±ÏߵĽ»µãÎÊÌ⣬ͨ¹ý·½³Ì×é$\left\{\begin{array}{l}{y=2{x}^{2}-4x-2}\\{y=\frac{4}{3}x+b}\end{array}\right.$ÓÐÒ»×é½â¿ÉÇó³öbºÍΨһ½â£¬´Ó¶øµÃµ½Eµã×ø±ê£®
½â´ð ½â£º£¨1£©°ÑA£¨0£¬-2£©£¬B£¨3£¬4£©´úÈëy=2x2+mx+nµÃ$\left\{\begin{array}{l}{n=-2}\\{18+3m+n=4}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{m=-4}\\{n=-2}\end{array}\right.$£¬
ËùÒÔÅ×ÎïÏß½âÎöʽΪy=2x2-4x-2£¬![]()
ÒòΪy=2£¨x-1£©2-4£¬
ËùÒÔÅ×ÎïÏߵĶԳÆÖáΪֱÏßx=1£¬¶¥µã×ø±êΪ£¨1£¬-4£©£»
£¨2£©¢ÙCµã×ø±êΪ£¨-3£¬-4£©£¬Èçͼ£¬¶¥µãM£¨1£¬-4£©£¬Ö±ÏßBC½»Ö±Ïßx=1ÓÚNµã£¬
ÉèÖ±ÏßBCµÄ½âÎöʽΪy=kx£¬°ÑB£¨3£¬4£©´úÈëµÃ3k=4£¬½âµÃk=$\frac{4}{3}$£¬
ËùÒÔÖ±ÏßBCµÄ½âÎöʽΪy=$\frac{4}{3}$x£¬
µ±x=1ʱ£¬y=$\frac{4}{3}$£¬ÔòN£¨1£¬$\frac{4}{3}$£©£¬
ÒòΪµ±µãDÔÚÏß¶ÎMNÉÏÔ˶¯Ê±£¬Ö±ÏßCDÓëͼÏóGÓй«¹²µã£¬
ËùÒÔtµÄ·¶Î§Îª-4¡Üt¡Ü$\frac{4}{3}$£»
¢ÚÒòΪ¡÷EBCµÄÃæ»ý×î´ó£¬¶øBCΪ¶¨Öµ£¬ËùÒÔEµãµ½BCµÄ¾àÀë×î´ó£¬
ËùÒÔ¹ýµãEƽÐÐÓÚBCÇÒÓëÅ×ÎïÏßÖ»ÓÐÒ»¸ö¹«¹²µãʱ£¬µãEµ½BCµÄ¾àÀë×î´ó£¬
Éè¹ýµãEµÄÖ±Ïß½âÎöʽΪy=$\frac{4}{3}$x+b£¬
·½³Ì×é$\left\{\begin{array}{l}{y=2{x}^{2}-4x-2}\\{y=\frac{4}{3}x+b}\end{array}\right.$ÓÐÒ»×é½â£¬
ÏûÈ¥yµÃµ½6x2-16x-6-3b=0£¬¡÷=162-4¡Á6¡Á£¨-6-3b£©=0£¬½âµÃb=-$\frac{50}{9}$£¬x=$\frac{4}{3}$£¬
µ±x=$\frac{4}{3}$ʱ£¬y=$\frac{4}{3}$¡Á$\frac{4}{3}$-$\frac{50}{9}$=-$\frac{34}{9}$£¬
ËùÒÔEµã×ø±êΪ£¨$\frac{4}{3}$£¬-$\frac{34}{9}$£©£®
µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷ºÍ¶þ´Îº¯ÊýµÄÐÔÖÊ£»Àí½â×ø±êÓëͼÐÎÐÔÖÊ£»»áÀûÓôý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£»¼ÇסÈý½ÇÐÎÃæ»ý¹«Ê½£®