题目内容
17.化简:(1)(ab-5b2+2a3)-(3ab+6a2-5b2)
(2)(a+b)-2(2a-3b)+(3a-2b)
分析 (1)先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可;
(2)先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.
解答 解:(1)(ab-5b2+2a3)-(3ab+6a2-5b2)
=ab-5b2+2a3-3ab-6a2+5b2
=-2ab+2a3-6a2;
(2)(a+b)-2(2a-3b)+(3a-2b)
=a+b-4a+6b+3a-2b
=5b.
点评 本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.
练习册系列答案
相关题目
2.下列方程组中,解为$\left\{\begin{array}{l}{x=1}\\{y=1}\\{z=2}\end{array}\right.$的是( )
| A. | $\left\{\begin{array}{l}{x+y+z=4}\\{2x+y-z=1}\\{3x+2y-4z=-3}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x-y-z=0}\\{z+y-x=1}\\{2x+y-2x=5}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{x+y=4}\\{y+z=5}\\{x+z=6}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{2x+3y-z=5}\\{x+y+z=4}\\{x-y+2z=2}\end{array}\right.$ |