题目内容
13.已知3m-4n=5,3s-4t=5,其中m,n,s,t都是常数,请你探究:是否存在一个二元一次方程,其解分别为$\left\{\begin{array}{l}{x=m}\\{y=n}\end{array}\right.$与$\left\{\begin{array}{l}{x=s}\\{y=t}\end{array}\right.$?若存在,请你求出这个二元一次方程;若不存在,请你说明理由.分析 根据二元一次方程的定义,可得答案.
解答 解:存在一个二元一次方程,
3x-4y=5.
点评 本题考查了二元一次方程的解,二元一次方程的解是二元一次方程成立的未知数的值.
练习册系列答案
相关题目
5.化简$\frac{{y}^{2}}{2x-y}$+$\frac{4{x}^{2}}{y-2x}$的结果是( )
| A. | y-2x | B. | -2x-y | C. | 2x-y | D. | y+2x |
2.下列方程组中,解为$\left\{\begin{array}{l}{x=1}\\{y=1}\\{z=2}\end{array}\right.$的是( )
| A. | $\left\{\begin{array}{l}{x+y+z=4}\\{2x+y-z=1}\\{3x+2y-4z=-3}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x-y-z=0}\\{z+y-x=1}\\{2x+y-2x=5}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{x+y=4}\\{y+z=5}\\{x+z=6}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{2x+3y-z=5}\\{x+y+z=4}\\{x-y+2z=2}\end{array}\right.$ |