题目内容
【题目】如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD=AC, 联结BD、CD,BD交直线AC于点E.
![]()
![]()
(1)当∠CAD=90°时,求线段AE的长.
(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,
①当∠CAD<120°时,设
,
(其中
表示△BCE的面积,
表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;
②当
时,请直接写出线段AE的长.
【答案】(1)
(2)
(
);(3)
或![]()
【解析】
(1)过点
作
,垂足为点
.
,则
.根据
构建方程求出
即可解决问题.
(2)①证明
,可得
,由此构建关系式即可解决问题.
②分两种情形:当
时,当
时,分别求解即可解决问题.
解:(1)
是等边三角形,
,
.
,
,
,
,
,
,
.
过点
作
,垂足为点
.
![]()
设
,则
.
在
中,
,
![]()
,
,
,
在
中,
,
![]()
,
解得
.
所以线段
的长是
.
(2)①设
,则
,
.
,
,
![]()
,
又
,
,
,
又
,
,
![]()
,
由(1)得在
中,
,
,
,
![]()
.
②当
时,
![]()
,则有
,
整理得
,
解得
或
(舍弃),
.
当
时,同法可得![]()
![]()
当
时,
,
整理得
,
解得
(舍弃)或1,
.
综上所述:当∠CAD<120°时,
; 当120°<∠CAD<180°时,
.
练习册系列答案
相关题目