题目内容

如图,正方向ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于 .

1cm或2cm.

【解析】

试题分析:根据题意画出图形,过P作PN⊥BC,交BC于点N,由ABCD为正方形,得到AD=DC=PN,在直角三角形ADE中,利用锐角三角函数定义求出DE的长,进而利用勾股定理求出AE的长,根据M为AE中点求出AM的长,利用HL得到三角形ADE与三角形PQN全等,利用全等三角形对应边,对应角相等得到DE=NQ,∠DAE=∠NPQ=30°,再由PN与DC平行,得到∠PFA=∠DEA=60°,进而得到PM垂直于AE,在直角三角形APM中,根据AM的长,利用锐角三角函数定义求出AP的长,再利用对称性确定出AP′的长即可.

试题解析:根据题意画出图形,过P作PN⊥BC,交BC于点N,

∵四边形ABCD为正方形,

∴AD=DC=PN,

在Rt△ADE中,∠DAE=30°,AD=3cm,

∴tan30°=

即DE=cm,

根据勾股定理得:AE=cm,

∵M为AE的中点,

∴AM=AE=cm,

在Rt△ADE和Rt△PNQ中,

∴Rt△ADE≌Rt△PNQ(HL),

∴DE=NQ,∠DAE=∠NPQ=30°,

∵PN∥DC,

∴∠PFA=∠DEA=60°,

∴∠PMF=90°,即PM⊥AF,

在Rt△AMP中,∠MAP=30°,cos30°=

∴AP=cm;

由对称性得到AP′=DP=AD-AP=3-2=1cm,

综上,AP等于1cm或2cm.

考点:1.全等三角形的判定与性质;2.正方形的性质;3.解直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网