题目内容
14.解方程组:(1)$\left\{\begin{array}{l}{2x+5=y}\\{3x+y=10}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x+3y+z=6}\\{x-y+2z=-1}\\{x+2y-z=5}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{\frac{x}{4}+\frac{y}{2}=4}\\{3x-2y=16}\end{array}\right.$;
(4)$\left\{\begin{array}{l}{3(x-2)=2(y-2)}\\{(x-2)+(y-2)=5}\end{array}\right.$.
分析 (1)方程组利用加减消元法求出解即可;
(2)方程组利用加减消元法求出解即可;
(3)方程组整理后,利用加减消元法求出解即可;
(4)方程组整理后,利用加减消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{2x-y=-5①}\\{3x+y=10②}\end{array}\right.$,
①+②得:5x=5,即x=1,
把x=1代入①得:y=7,
则方程组的解为$\left\{\begin{array}{l}{x=1}\\{y=7}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x+3y+z=6①}\\{x-y+2z=-1②}\\{x+2y-z=5③}\end{array}\right.$,
①+③得:3x+5y=11④,
②+③×2得:x+y=3⑤,
⑤×5-④得:2x=4,即x=2,
把x=2代入⑤得:y=1,
把x=2,y=1代入①得:z=-1,
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=1}\\{z=-1}\end{array}\right.$;
(3)方程组整理得:$\left\{\begin{array}{l}{x+2y=16①}\\{3x-2y=16②}\end{array}\right.$,
①+②得:4x=32,即x=8,
把x=8代入①得:y=4,
则方程组的解为$\left\{\begin{array}{l}{x=8}\\{y=4}\end{array}\right.$;
(4)方程组整理得:$\left\{\begin{array}{l}{3x-2y=2①}\\{x+y=9②}\end{array}\right.$,
①+②×2得:5x=20,即x=4,
把x=4代入②得:y=5,
则方程组的解为$\left\{\begin{array}{l}{x=4}\\{y=5}\end{array}\right.$.
点评 此题考查了解二元一次方程组,以及三元一次方程组,熟练掌握运算法则是解本题的关键.