题目内容
考点:矩形的性质,全等三角形的判定
专题:证明题
分析:先求出∠BAE=45°,判断出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AB=BE,∠AEB=45°,从而得到BE=CD,再求出△CEF是等腰直角三角形,根据等腰直角三角形的性质可得CG=EG,再求出∠BEG=∠DCG=135°,然后利用“边角边”证明即可.
解答:证明:∵AE平分∠BAD,
∴∠BAE=45°,
∴△ABE是等腰直角三角形,
∴AB=BE,∠AEB=45°,
∵AB=CD,
∴BE=CD,
∵∠CEF=∠AEB=45°,∠ECF=90°,
∴△CEF是等腰直角三角形,
∵点G为EF的中点,
∴CG=EG,∠FCG=45°,
∴∠BEG=∠DCG=135°,
在△DCG和△BEG中,
,
∴△DCG≌△BEG(SAS).
∴∠BAE=45°,
∴△ABE是等腰直角三角形,
∴AB=BE,∠AEB=45°,
∵AB=CD,
∴BE=CD,
∵∠CEF=∠AEB=45°,∠ECF=90°,
∴△CEF是等腰直角三角形,
∵点G为EF的中点,
∴CG=EG,∠FCG=45°,
∴∠BEG=∠DCG=135°,
在△DCG和△BEG中,
|
∴△DCG≌△BEG(SAS).
点评:本题考查了矩形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,难点在于证明得到△ABE和△CEF都是等腰直角三角形.
练习册系列答案
相关题目
已知等腰三角形的一边等于4,一边等于7,那么它的周长等于( )
| A、12 | B、18 |
| C、12或21 | D、15或18 |