题目内容

9.如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的三角板如图放置,使三角板斜边的两个端点分别与A、D重合,E为直角顶点,连接EC、BE.
(1)求证:BE=CE;
(2)延长CE、BA交于F,设BE与AC相交于点O,则OE与EF的关系应为OE=OF;
(3)在(2)的条件下,已知AF=2,AO=1,求AB的长.

分析 (1)欲证明BE=EC,只要证明△EAB≌△EDC即可.
(2)欲证明BE=EC,只要证明△BEF≌△CEO即可.
(3)设AB=x,根据AC=2AB列出方程即可解决.

解答 (1)证明:在图1中,∵EA=ED,∠AED=90°,
∴∠EAD=∠EDA=45°,
∴∠EDC=180°-∠EDA=135°,
∵∠BAC=90°,
∴∠BAE=∠BAC+∠EAD=135°,
∴∠EAB=∠EDC,
∵AC=2AB,DA=DC,
∴AB=DC,
在△EAB和△EDC中,
$\left\{\begin{array}{l}{EA=ED}\\{∠EAB=∠EDC}\\{AB=DC}\end{array}\right.$,
∴△EAB≌△EDC,
∴BE=EC.
(2)在图2中,由(1)可知△EAB≌△EDC,
∴BE=EC,∠ABE=∠ECD,
在△BEF和△CEO中,
$\left\{\begin{array}{l}{∠FBE=∠ECO}\\{BE=EC}\\{∠BEF=∠CEO}\end{array}\right.$,
∴△BEF≌△CEO,
∴EF=OE.
故答案为EF=OE.
(3)由(2)可知△BEF≌△CEO,设AB=x,
∵AF=2,AO=1,
∴BF=CO=AB+AF=x+2,AC=AO+OC=1+x+2=x+3,
∵AC=2AB,
∴x+3=2x
∴x=3,
∴AB=3.

点评 本题考查全等三角形的判定和性质、等腰直角三角形的性质、解题的关键是正确寻找全等三角形,学会用方程的思想思考问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网