题目内容

7.如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=4cm,则AC的长为4$\sqrt{5}$cm.

分析 根据三角形的中位线定理可得出BC=4,由AB=AC,可证明BG=CF=2,由勾股定理求出CE,即可得出AC的长.

解答 解:∵点D、E分别是边AB、AC的中点,
∴DE=$\frac{1}{2}$BC,
∵DE=4cm,
∴BC=8cm,
∵AB=AC,四边形DEFG是正方形,
∴DG=EF,BD=CE,
在Rt△BDG和Rt△CEF,
$\left\{\begin{array}{l}{BD=CE}\\{DG=EF}\end{array}\right.$,
∴Rt△BDG≌Rt△CEF,
∴BG=CF=2,
∴EC=2$\sqrt{5}$,
∴AC=4$\sqrt{5}$cm.
故答案为:4$\sqrt{5}$cm.

点评 本题考查了相似三角形的判定、勾股定理、等腰三角形的性质以及正方形的性质,是基础题,比较简单.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网