题目内容

如图,在△ABC中,D是边AC上一点,且BD=BC,点E、F分别是DC、AB的中点.求证:
(1)EF=
1
2
AB;
(2)过A点作AG∥EF,交BE的延长线于点G,则BE=GE.
考点:三角形中位线定理,等腰三角形的判定与性质,直角三角形斜边上的中线
专题:证明题
分析:(1)连接BE,根据等腰三角形三线合一的性质可得BE⊥AC,再根据直角三角形斜边上的中线等于斜边的一半可得EF=
1
2
AB;
(2)求出AF=EF,再根据等边对等角可得∠AEF=∠EAF,根据两直线平行,内错角相等可得∠AEF=∠EAG,从而得到∠EAF=∠EAG,然后利用等腰三角形三线合一的性质可得BE=GE.
解答:(1)证明:如图,连接BE,
∵BD=BC,点E是CD的中点,
∴BE⊥AC,
∵点F是AB的中点,
∴EF=
1
2
AB;

(2)解:∵AF=EF=
1
2
AB,
∴∠AEF=∠EAF,
∵AG∥EF,
∴∠AEF=∠EAG,
∴∠EAF=∠EAG,
又∵BE⊥AC,
∴BE=GE(等腰三角形三线合一).
点评:本题主要考查了等腰三角形三线合一的性质,直角三角形斜边上的中线等于斜边的一半的性质,熟记各性质是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网