题目内容

15.如图,为测量某建筑物BC上旗杆AB的高度,在离该建筑物底部12m的点F处,从E点观测旗杆的顶端A处和底端B处,视线与水平线夹角∠AED为52°,∠BED为45°,目高EF为1.6m.
(1)求建筑物BC的高度;
(2)求旗杆AB的高度(结果精确到0.1m)
【参考数据:sin52°=0.79,cos52°=0.62,tan52°=1.28】

分析 (1)先过点E作ED⊥BC于D,由已知底部B的仰角为45°得BD=ED=FC=12,DC=EF=1.6,从而求出BC;
(2)由已知由E点观测到旗杆顶部A的仰角为52°可求出AD,则AB=AD-BD.

解答 解:(1)根据题意得:EF⊥FC,ED∥FC,
∴四边形CDEF是矩形,
∵∠BED=45°,
∴∠EBD=45°,
∴BD=ED=FC=12,
∴BC=BD+DC=BD+EF=12+1.6=13.6,
答:建筑物BC的高度为13m;
(2)∵∠AED=52°,
∴AD=ED•tan52°
≈12×1.28≈15.36m,
∴AB=AD-BD=15.36-12=3.4m,
答:旗杆AB的高度约为3.4m.

点评 此题考查的知识点是解直角三角形的应用,解题的关键是把实际问题转化为解直角三角形问题,先得到等腰直角三角形,再根据三角函数求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网