题目内容
如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则的值为________.
如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0).下列结论:①ab<0;②b2>4a;③0<a+b+c<2;④0<b<1;⑤当x>-1时,y>0.其中正确结论的个数是( )
A. 5个 B. 4个 C. 3个 D. 2个
如图8,已知AB∥CD,AD∥ BE,∠B=40°,∠E=48°,则∠CDF=_______度.
如图,⊙M与菱形ABCD在平面直角坐标系中,点M的坐标为(﹣3,1),点A的坐标为(2,0),点B的坐标为(1,﹣),点D在x轴上,且点D在点A的右侧.
(1)求菱形ABCD的周长;
(2)若⊙M沿x轴向右以每秒2个单位长度的速度平移,菱形ABCD沿x轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t(秒),当⊙M与AD相切,且切点为AD的中点时,连接AC,求t的值及∠MAC的度数;
(3)在(2)的条件下,当点M与AC所在的直线的距离为1时,求t的值.
【答案】(1)菱形的周长为8;(2)t=,∠MAC=105°;(3)当t=1﹣或t=1+时,圆M与AC相切.
【解析】试题分析:(1)过点B作BE⊥AD,垂足为E.由点A和点B的坐标可知:BE=,AE=1,依据勾股定理可求得AB的长,从而可求得菱形的周长;(2)记 M与x轴的切线为F,AD的中点为E.先求得EF的长,然后根据路程=时间×速度列出方程即可;平移的图形如图3所示:过点B作BE⊥AD,垂足为E,连接MF,F为 M与AD的切点.由特殊锐角三角函数值可求得∠EAB=60°,依据菱形的性质可得到∠FAC=60°,然后证明△AFM是等腰直角三角形,从而可得到∠MAF的度数,故此可求得∠MAC的度数;(3)如图4所示:连接AM,过点作MN⊥AC,垂足为N,作ME⊥AD,垂足为E.先求得∠MAE=30°,依据特殊锐角三角函数值可得到AE的长,然后依据3t+2t=5-AE可求得t的值;如图5所示:连接AM,过点作MN⊥AC,垂足为N,作ME⊥AD,垂足为E.依据菱形的性质和切线长定理可求得∠MAE=60°,然后依据特殊锐角三角函数值可得到EA=,最后依据3t+2t=5+AE.列方程求解即可.
试题解析:( )如图1所示:过点作,垂足为,
∵, ,
∴, ,
∴,
∵四边形为菱形,
∴菱形的周长.
()如图2所示,⊙与轴的切线为, 中点为,
∵,
∵,且为中点,
解得.
平移的图形如图3所示:过点作,
垂足为,连接, 为⊙与切点,
∵由()可知, , ,
∵四边形是菱形,
∵为切线,
∵为的中点,
∴是等腰直角三角形,
∴.
()如图4所示:连接,过点作,垂足为,作,垂足为,
∵四边形为菱形, ,
∵、是圆的切线
∵。
如图5所示:连接,过点作,垂足为,作,垂足为,
∵、是圆的切线,
综上所述,当或时,圆与相切.
点睛:此题是一道圆的综合题.圆中的方法规律总结:1、分类讨论思想:研究点、直线和圆的位置关系时,就要从不同的位置关系去考虑,即要全面揭示点、直线和元的各种可能的位置关系.这种位置关系的考虑与分析要用到分类讨论思想.1、转化思想:(1)化“曲面”为“平面”(2)化不规则图形面积为规则图形的面积求解.3、方程思想:再与圆有关的计算题中,除了直接运用公式进行计算外,有时根据图形的特点,列方程解答,思路清楚,过程简捷.
【题型】解答题【结束】28
如图1,在平面直角坐标系中,直线l与x轴、y轴分别交于点B(4,0)、C(0,3),点A为x轴负半轴上一点,AM⊥BC于点M交y轴于点N(0, ).已知抛物线y=ax2+bx+c经过点A,B,C.
(1)求抛物线的函数式;
(2)连接AC,点D在线段BC上方的抛物线上,连接DC,DB,若△BCD和△ABC面积满足S△BCD= S△ABC, 求点D的坐标;
(3)如图2,E为OB中点,设F为线段BC上一点(不含端点),连接EF.一动点P从E出发,沿线段EF以每秒3个单位的速度运动到F,再沿着线段PC以每秒5个单位的速度运动到C后停止.若点P在整个运动过程中用时最少,请直接写出最少时间和此时点F的坐标.
先化简,再求值: ,其中.
实数范围内有意义,则的取值范围是__________.
下列计算中,正确的是( )
A. 2a+3b=5ab B. (3a3)2=6a6 C. a6÷a2=a3 D. ﹣3a+2a=﹣a
已知一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,则(x1﹣1)(x2﹣1)的值是_____.
一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?