题目内容
10.(1)如果P、Q分别从A、B两点同时出发,经过几秒钟,△PBQ的面积等于△ABC的三分之一?
(2)如果P、Q两点分别从A、B两点同时出发,而且动点P从A点出发,沿AB移动(到达点B即停止运动),动点Q从B出发,沿BC移动(到达点C即停止运动),几秒钟后,P、Q相距6厘米?
分析 (1)设经过x秒钟,△PBQ的面积等于是△ABC的三分之一,分别表示出线段PB和线段BQ的长,然后根据面积之间的关系列出方程求得时间即可;
(2)根据勾股定理列出方程求解即可;
解答 解:(1)设t秒后,△PBQ的面积等于是△ABC的三分之一,根据题意得:
$\frac{1}{2}$×2t(6-t)=$\frac{1}{3}$×$\frac{1}{2}$×6×8,
解得:t=2或4.
答:2秒或4秒后,△PBQ的面积等于是△ABC的三分之一.
(2)设x秒时,P、Q相距6厘米,根据题意得:
(6-x)2+(2x)2=36,
解得:x=0(舍去)或x=$\frac{12}{5}$.
答:$\frac{12}{5}$秒时,P、Q相距6厘米.
点评 本题考查了一元二次方程的应用,掌握三角形的面积计算方法,勾股定理,能够表示出线段PB和QB的长是解答本题的关键.
练习册系列答案
相关题目
19.从-2,-2,1,2这四个数中,任取两个不同的数作为一次函数y=kx+b的系数k、b,则一次函数y=kx+b的图象不经过第三象限的概率是( )
| A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{6}$ |
20.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,设这个班有学生x人,下列方程正确的是( )
| A. | 3x+20=4x-25 | B. | 3x-25=4x+20 | C. | 4x-3x=25-20 | D. | 3x-20=4x+25 |