题目内容
7.(1)求证:OE=CD;
(2)若菱形ABCD的边长为4,∠ABC=60°,求AE的长.
分析 (1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,可得OE=CD即可;
(2)根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.
解答 (1)证明:在菱形ABCD中,OC=$\frac{1}{2}$AC.
∴DE=OC.
∵DE∥AC,
∴四边形OCED是平行四边形.
∵AC⊥BD,
∴平行四边形OCED是矩形.
∴OE=CD.
(2)解:在菱形ABCD中,∠ABC=60°,
∴AC=AB=4.
∴在矩形OCED中,CE=OD=$\sqrt{A{D}^{2}-A{O}^{2}}$=2$\sqrt{3}$.
在Rt△ACE中,
AE=$\sqrt{A{C}^{2}+C{E}^{2}}$=2$\sqrt{7}$.
点评 本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.
练习册系列答案
相关题目